资源类型

期刊论文 127

年份

2023 6

2022 7

2021 14

2020 16

2019 8

2018 3

2017 3

2016 5

2015 2

2014 4

2013 1

2012 1

2011 12

2010 6

2009 7

2008 7

2007 5

2006 2

2005 2

2004 3

展开 ︾

关键词

对地观测 3

三峡工程 2

信息处理 2

土石方 2

大地水准面 2

干旱 2

硗碛水电站 2

章动 2

青藏高原腹地 2

2035 1

ANSYS 1

DX桩 1

EMD距离 1

GOCE 1

GRACE 1

MixMax模型 1

Nd-Fe-B磨削油泥 1

SINS/GNSS数据融合 1

“高分天目计划” 1

展开 ︾

检索范围:

排序: 展示方式:

Effect of earth reinforcement, soil properties and wall properties on bridge MSE walls

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1209-1221 doi: 10.1007/s11709-021-0764-2

摘要: Mechanically stabilized earth (MSE) retaining walls are popular for highway bridge structures. They have precast concrete panels attached to earth reinforcement. The panels are designed to have some lateral movement. However, in some cases, excessive movement and even complete dislocation of the panels have been observed. In this study, 3-D numerical modeling involving an existing MSE wall was undertaken to investigate various wall parameters. The effects of pore pressure, soil cohesion, earth reinforcement type and length, breakage/slippage of reinforcement and concrete strength, were examined. Results showed that the wall movement is affected by soil pore pressure and reinforcement integrity and length, and unaffected by concrete strength. Soil cohesion has a minor effect, while the movement increased by 13–20 mm for flexible geogrid reinforced walls compared with the steel grid walls. The steel grid stresses were below yielding, while the geogrid experienced significant stresses without rupture. Geogrid reinforcement may be used taking account of slippage resistance and wall movement. If steel grid is used, non-cohesive soil is recommended to minimize corrosion. Proper soil drainage is important for control of pore pressure.

关键词: mechanically stabilized earth walls     precast concrete panels     backfill soil     finite element modeling     earth reinforcement    

Effect of loading rate on shear strength parameters of mechanically and biologically treated waste

《环境科学与工程前沿(英文)》 2022年 第16卷 第12期 doi: 10.1007/s11783-022-1595-7

摘要:

● Mechanical behavior of MBT waste affected by loading rate was investigated.

关键词: Mechanically and biologically treated waste     Landfill     Triaxial test     Loading rate     Axial strain     Shear strength parameter    

Slender reinforced concrete shear walls with high-strength concrete boundary elements

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 138-151 doi: 10.1007/s11709-022-0897-y

摘要: Reinforced concrete structural walls are commonly used for resisting lateral forces in buildings. Owing to the advancements in the field of concrete materials over the past few decades, concrete mixes of high compressive strength, commonly referred to as high-strength concrete (HSC), have been developed. In this study, the effects of strategic placement of HSC on the performance of slender walls were examined. The finite-element model of a conventional normal-strength concrete (NSC) prototype wall was validated using test data available in extant studies. HSC was incorporated in the boundary elements of the wall to compare its performance with that of the conventional wall at different axial loads. Potential reductions in the reinforcement area and size of the boundary elements were investigated. The HSC wall exhibited improved strength and stiffness, and thereby, allowed reduction in the longitudinal reinforcement area and size of the boundary elements for the same strength of the conventional wall. Cold joints resulting from dissimilar concrete pours in the web and boundary elements of the HSC wall were modeled and their impact on behavior of the wall was examined.

关键词: slender walls     high-strength concrete     rectangular and barbell-shaped walls     cold joints    

Mechanical properties of stabilized artificial organic soil

XU Riqing, GUO Yin, LIU Zengyong

《结构与土木工程前沿(英文)》 2008年 第2卷 第2期   页码 161-165 doi: 10.1007/s11709-008-0023-9

摘要: In order to study the influence of organic matter on the mechanical properties of stabilized soil and the effect of XGL2005 on stabilizing organic soil, unconfined compressive strength tests were carried out. Test results indicated that the strength of stabilized soil decreased in the form of a logarithmic function as the organic matter content increased. In contrast, the strength increased in the form of a power function as the content of the stabilization agent increased. The strength of cement stabilized organic soil was reinforced greatly by adding the stabilizer XGL2005. Based on the law obtained from the test, a strength prediction model was established by regression analysis. The model included the influence of the curing time, the content of the cement, the organic matter content and the stabilization agent on the strength of stabilized soil.

关键词: compressive strength     stabilized     stabilization     regression analysis     stabilizer XGL2005    

Behaviour of self-centring shear walls——A state of the art review

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 53-77 doi: 10.1007/s11709-022-0850-0

摘要: The application of unbonded post-tensioning (PT) in structural walls has led to the development of advanced self-centring (rocking) shear wall systems that has significant advantages, including accelerated construction due to the incorporation of prefabricated elements and segmental construction for different materials (e.g., concrete, masonry, and timber), reduced residual drifts, and little damage upon extreme seismic and wind loads. Concrete, masonry, and timber are often used for the construction of unbonded PT structural wall systems. Despite extensive research since the 1980s, there are no well-established design guidelines available on the shear wall configuration with the required energy dissipation system, joint’s locations and acceptance criteria for shear sliding, confinement, seismic performance factors, PT loss, PT force range and residual drifts of shear walls subjected to lateral loads. In this research a comprehensive state-of-the-art literature review was performed on self-centring shear wall system. An extensive study was carried out to collect a database of 100 concrete, masonry, and self-centring shear wall tests from the literature. The established database was then used to review shear walls’ configurations, material, and components to benchmark requirements applicable for design purposes. The behaviour of concrete, masonry and timber shear walls were compared and critically analysed. The general behaviour, force-displacement performance of the walls, ductility, and seismic response factors, were critically reviewed and analysed for different self-centring wall systems to understand the effect of different parameters including configurations of the walls, material used for construction of the wall (concrete, masonry, timber) and axial stress ratio. The outcome of this research can be used to better understand the behaviour of self-centring wall system in order to develop design guidelines for such walls.

关键词: self-centring shear walls     rocking walls     energy dissipation     seismic performance factors     PT loss     residual drift    

Self-centring segmental retaining walls—A new construction system for retaining walls

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 980-1000 doi: 10.1007/s11709-021-0737-5

摘要: This paper reports on an experimental study on a new self-centring retaining wall system. Four post-tensioned segmental retaining walls (PSRWs) were experimentally tested. Each of the walls was constructed using seven T-shaped concrete segments with a dry stack. The walls were tested under incrementally increasing cyclic lateral load. The effect of the wall height, levels of post-tensioning (PT) force, and bonded versus unbonded condition of PT reinforcement on the structural behavior of the PSRWs was investigated. The results showed that such PSRWs are structurally adequate for water retaining structures. According to the results, increasing the wall height decreases initial strength but increases the deformation capacity of the wall. The larger deformation capacity and ductility of PSRW make it a suitable structural system for fluctuating loads or deformation, e.g., seawall. It was also found that increasing the PT force increases the wall’s stiffness; however, reduces its ductility. The residual drift and the extent of damage of the unbonded PSRWs were significantly smaller than those of the bonded ones. Results suggest that this newly developed self-centring retaining wall can be a suitable structural system to retain lateral loads. Due to its unique deformation capacity and self-centring behavior, it can potentially be used for seawall application.

关键词: retaining wall     segmental     precast concrete     unbonded post-tensioning     water retaining wall     seawall    

Biopolymer-stabilized emulsions on the basis of interactions between β -lactoglobulin and ι -carrageenan

Qiaomei RU, Younghee CHO, Qingrong HUANG,

《化学科学与工程前沿(英文)》 2009年 第3卷 第4期   页码 399-406 doi: 10.1007/s11705-009-0253-y

摘要: -Carrageenan and -lactoglobulin (-lg) stabilized oil-in-water (O/W) emulsions, which can be used for the oral administration of bioactive but environmentally sensitive ingredients, have been successfully prepared. The effects of protein/polysaccharide ratios, total biopolymer concentration, environmental stress (thermal processing and sonication), and pH on the complex formation between -carrageenan and -lactoglobulin have been investigated. We found that -lactoglobulin and-carrageenan stabilized emulsions can be formed at pH values of 6.0, 4.0, and 3.4. However, the microstructures of emulsions stabilized by -lactoglobulin and -carrageenan was identified by optical microscopy, and it indicated that the emulsion prepared at pH 6.0 flocculated more extensively, while its hydrodynamic radius was much bigger than those prepared at pH 4.0 and 3.4. Regarding rheological properties, the emulsion of pH 6.0 showed a more solid-like behavior but with a lower viscosity than those of pH 4.0 and 3.4. The optimum concentration ranges for -lg and-carrageenan to form stable emulsions at pH 4.0 and 3.4 were 0.3wt-%―0.6wt-% and 0.4wt-%―0.7wt-%, respectively.

High-precision gyro-stabilized control of a gear-driven platform with a floating gear tension device

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 487-503 doi: 10.1007/s11465-021-0635-5

摘要: This study presents an improved compound control algorithm that substantially enhances the anti-disturbance performance of a gear-drive gyro-stabilized platform with a floating gear tension device. The tension device can provide a self-adjustable preload to eliminate the gap in the meshing process. However, the weaker gear support stiffness and more complex meshing friction are also induced by the tension device, which deteriorates the control accuracy and the ability to keep the aim point of the optical sensors isolated from the platform motion. The modeling and compensation of the induced complex nonlinearities are technically challenging, especially when base motion exists. The aim of this research is to cope with the unmeasured disturbances as well as the uncertainties caused by the base lateral motion. First, the structural properties of the gear transmission and the friction-generating mechanism are analyzed, which classify the disturbances into two categories: Time-invariant and time-varying parts. Then, a proportional-integral controller is designed to eliminate the steady-state error caused by the time-invariant disturbance. A proportional multiple-integral-based state augmented Kalman filter is proposed to estimate and compensate for the time-varying disturbance that can be approximated as a polynomial function. The effectiveness of the proposed compound algorithm is demonstrated by comparative experiments on a gear-drive pointing system with a floating gear tension device, which shows a maximum 76% improvement in stabilization precision.

关键词: inertially stabilized platform     floating gear tension device     nonlinear friction     disturbance compensation     proportional multiple-integral observer    

Experiment and calculation on seismic behavior of RC composite core walls with concealed steel truss

Wanlin CAO , Weihua CHANG , Changjun ZHAO , Jianwei ZHANG ,

《结构与土木工程前沿(英文)》 2009年 第3卷 第3期   页码 255-261 doi: 10.1007/s11709-009-0043-0

摘要: To improve the seismic performance of reinforced concrete core walls, reinforced concrete composite core walls with concealed steel truss were proposed and systemically investigated. Two 1/6 scale core wall specimens, including a normal reinforced concrete core wall and a reinforced concrete composite core wall with concealed steel truss, were designed. The experimental study on seismic performance under cyclic loading was carried out. The load-carrying capacity, stiffness, ductility, hysteretic behavior and energy dissipation of the core walls were discussed. The test results showed that the seismic performance of core walls is improved greatly by the concealed steel truss. The calculated results were found to agree well with the actual measured ones.

关键词: reinforced concrete     steel truss     core walls     seismic performance    

Superhydrophobic, mechanically flexible and recyclable reduced graphene oxide wrapped sponge for highly

Lijuan Qiu, Ruiyang Zhang, Ying Zhang, Chengjin Li, Qian Zhang, Ying Zhou

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 390-399 doi: 10.1007/s11705-018-1751-6

摘要:

Water pollution has become an urgent issue for our modern society, and it is highly desirable to rapidly deal with the water pollution without secondary pollution. In this paper, we have prepared a reduced graphene oxide (RGO) wrapped sponge with superhydrophobicity and mechanically flexibility via a facile low-temperature thermal treatment method under a reducing atmosphere. The skeleton of this sponge is completely covered with RGO layers which are closely linked to the skeleton. This sponge has an abundant pore structure, high selectivity, good recyclability, low cost, and outstanding adsorption capacity for floating oil or heavy oil underwater. In addition, this sponge can maintain excellent adsorption performance for various oils and organic solvents over 50 cycles by squeezing, and exhibits extremely high separation efficiencies, up to 6 × 106 and 3.6 × 106 L·m−3·h−1 in non-turbulent and turbulent water/oil systems, respectively. This superhydrophobic adsorbent with attractive properties may find various applications, especially in large-scale removal of organic contaminants and oil spill cleanup.

关键词: superhydrophobicity     mechanically flexibility     water/oil separation     reduced graphene oxide wrapped sponge    

Gain-enhanced reconfigurable radiation array with mechanically driven system and directive elements

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0716-0

摘要: In the artificial intelligence-driven modern wireless communication system, antennas are required to be reconfigurable in terms of size according to changing application scenarios. However, conventional antennas with constant phase distributions cannot achieve enhanced gains in different reconfigurable sizes. In this paper, we propose a mechanically reconfigurable radiation array (RRA) based on miniaturized elements and a mechanically reconfigurable system to obtain gain-enhanced antennas in compact and deployed states. A five-element RRA with a phase-reconfigurable center element is designed and analyzed theoretically. The experimental sample has been fabricated, driven by a deployable frame with only one degree of freedom to realize the size and phase distribution reconfiguration simultaneously to validate the enhanced gains of RRA. The proposed RRA can be tessellated into larger arrays to achieve higher gains in other frequency regimes, such as terahertz or photonics applications with nanometer fabrication technology.

关键词: mechanism     reconfigurable radiation array (RRA)     compact state     deployed state     enhanced gain    

Characteristics of the stabilized/solidified municipal solid wastes incineration fly ash and the leaching

Yan SHAO,Haobo HOU,Guangxing WANG,Sha WAN,Min ZHOU

《环境科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 192-200 doi: 10.1007/s11783-014-0719-0

摘要: Fly ash is a hazardous byproduct of municipal solid wastes incineration (MSWI). An alkali activated blast furnace slag-based cementitious material was used to stabilize/solidify the fly ash at experimental level. The characteristics of the stabilized/solidified fly ash, including metal leachability, mineralogical characteristics and the distributions of metals in matrices, were tested by toxic characteristic leaching procedure (TCLP), X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) respectively. Continuous acid extraction was utilized to extract metal ions and characterize their leaching behavior. The stabilization/solidification procedure for MSWI fly ash demonstrates a strong fixing capacity for the metals by the formation of C-S-H phase, hydrated calcium aluminosilicate and ettringite. The stabilized/solidified fly ash shows a dense and homogeneous microstructure. Cr is mainly solidified in hydrated calcium aluminosilicate, C-S-H and ettringite phase through physical encapsulation, precipitation, adsorption or substitution mechanisms, and Pb is mainly solidified in C-S-H phase and absorbed in the Si-O structure.

关键词: municipal solid waste incineration (MSWI) fly ash     blast furnace slag     leaching behavior     Cr     Pb    

Seismic effects on reinforcement load and lateral deformation of geosynthetic-reinforced soil walls

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1001-1015 doi: 10.1007/s11709-021-0734-8

摘要: Current design methods for the internal stability of geosynthetic-reinforced soil (GRS) walls postulate seismic forces as inertial forces, leading to pseudo-static analyses based on active earth pressure theory, which yields unconservative reinforcement loads required for seismic stability. Most seismic analyses are limited to the determination of maximum reinforcement strength. This study aimed to calculate the distribution of the reinforcement load and connection strength required for each layer of the seismic GRS wall. Using the top-down procedure involves all of the possible failure surfaces for the seismic analyses of the GRS wall and then obtains the reinforcement load distribution for the limit state. The distributions are used to determine the required connection strength and to approximately assess the facing lateral deformation. For sufficient pullout resistance to be provided by each reinforcement, the maximum required tensile resistance is identical to the results based on the Mononobe–Okabe method. However, short reinforcement results in greater tensile resistances in the mid and lower layers as evinced by compound failure frequently occurring in GRS walls during an earthquake. Parametric studies involving backfill friction angle, reinforcement length, vertical seismic acceleration, and secondary reinforcement are conducted to investigate seismic impacts on the stability and lateral deformation of GRS walls.

关键词: geosynthetics     reinforced soil     retaining walls     seismic performance    

Modeling of shear walls using finite shear connector elements based on continuum plasticity

Ulf Arne GIRHAMMAR, Per Johan GUSTAFSSON, Bo KÄLLSNER

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 143-157 doi: 10.1007/s11709-016-0377-3

摘要: Light-frame timber buildings are often stabilized against lateral loads by using diaphragm action of roofs, floors and walls. The mechanical behavior of the sheathing-to-framing joints has a significant impact on the structural performance of shear walls. Most sheathing-to-framing joints show nonlinear load-displacement characteristics with plastic behavior. This paper is focused on the finite element modeling of shear walls. The purpose is to present a new shear connector element based on the theory of continuum plasticity. The incremental load-displacement relationship is derived based on the elastic-plastic stiffness tensor including the elastic stiffness tensor, the plastic modulus, a function representing the yield criterion and a hardening rule, and function representing the plastic potential. The plastic properties are determined from experimental results obtained from testing actual connections. Load-displacement curves for shear walls are calculated using the shear connector model and they are compared with experimental and other computational results. Also, the ultimate horizontal load-carrying capacity is compared to results obtained by an analytical plastic design method. Good agreements are found.

关键词: shear walls     wall diaphragms     finite element modelling     plastic shear connector     analytical modelling     experimental comparison    

Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles

Zhengqing Cai, Xiao Zhao, Jun Duan, Dongye Zhao, Zhi Dang, Zhang Lin

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1263-8

摘要: Abstract ▪ Overviewed evolution and environmental applications of stabilized nanoparticles. ▪ Reviewed theories on particle stabilization for enhanced reactivity/deliverability. ▪ Examined various in situ remediation technologies based on stabilized nanoparticles. ▪ Summarized knowledge on transport of stabilized nanoparticles in porous media. ▪ Identified key knowledge gaps and future research needs on stabilized nanoparticles. Due to improved soil deliverability and high reactivity, stabilized nanoparticles have been studied for nearly two decades for in situ remediation of soil and groundwater contaminated with organic pollutants. While large amounts of bench- and field-scale experimental data have demonstrated the potential of the innovative technology, extensive research results have also unveiled various merits and constraints associated different soil characteristics, types of nanoparticles and particle stabilization techniques. Overall, this work aims to critically overview the fundamental principles on particle stabilization, and the evolution and some recent developments of stabilized nanoparticles for degradation of organic contaminants in soil and groundwater. The specific objectives are to: 1) overview fundamental mechanisms in nanoparticle stabilization; 2) summarize key applications of stabilized nanoparticles for in situ remediation of soil and groundwater contaminated by legacy and emerging organic chemicals; 3) update the latest knowledge on the transport and fate of stabilized nanoparticles; 4) examine the merits and constraints of stabilized nanoparticles in environmental remediation applications; and 5) identify the knowledge gaps and future research needs pertaining to stabilized nanoparticles for remediation of contaminated soil and groundwater. Per instructions of this invited special issue, this review is focused on contributions from our group (one of the pioneers in the subject field), which, however, is supplemented by important relevant works by others. The knowledge gained is expected to further advance the science and technology in the environmental applications of stabilized nanoparticles.

关键词: Stabilized nanoparticle     In-situ remediation     Organic contaminant     Soil remediation     Groundwater     Fate and transport    

标题 作者 时间 类型 操作

Effect of earth reinforcement, soil properties and wall properties on bridge MSE walls

期刊论文

Effect of loading rate on shear strength parameters of mechanically and biologically treated waste

期刊论文

Slender reinforced concrete shear walls with high-strength concrete boundary elements

期刊论文

Mechanical properties of stabilized artificial organic soil

XU Riqing, GUO Yin, LIU Zengyong

期刊论文

Behaviour of self-centring shear walls——A state of the art review

期刊论文

Self-centring segmental retaining walls—A new construction system for retaining walls

期刊论文

Biopolymer-stabilized emulsions on the basis of interactions between β -lactoglobulin and ι -carrageenan

Qiaomei RU, Younghee CHO, Qingrong HUANG,

期刊论文

High-precision gyro-stabilized control of a gear-driven platform with a floating gear tension device

期刊论文

Experiment and calculation on seismic behavior of RC composite core walls with concealed steel truss

Wanlin CAO , Weihua CHANG , Changjun ZHAO , Jianwei ZHANG ,

期刊论文

Superhydrophobic, mechanically flexible and recyclable reduced graphene oxide wrapped sponge for highly

Lijuan Qiu, Ruiyang Zhang, Ying Zhang, Chengjin Li, Qian Zhang, Ying Zhou

期刊论文

Gain-enhanced reconfigurable radiation array with mechanically driven system and directive elements

期刊论文

Characteristics of the stabilized/solidified municipal solid wastes incineration fly ash and the leaching

Yan SHAO,Haobo HOU,Guangxing WANG,Sha WAN,Min ZHOU

期刊论文

Seismic effects on reinforcement load and lateral deformation of geosynthetic-reinforced soil walls

期刊论文

Modeling of shear walls using finite shear connector elements based on continuum plasticity

Ulf Arne GIRHAMMAR, Per Johan GUSTAFSSON, Bo KÄLLSNER

期刊论文

Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles

Zhengqing Cai, Xiao Zhao, Jun Duan, Dongye Zhao, Zhi Dang, Zhang Lin

期刊论文